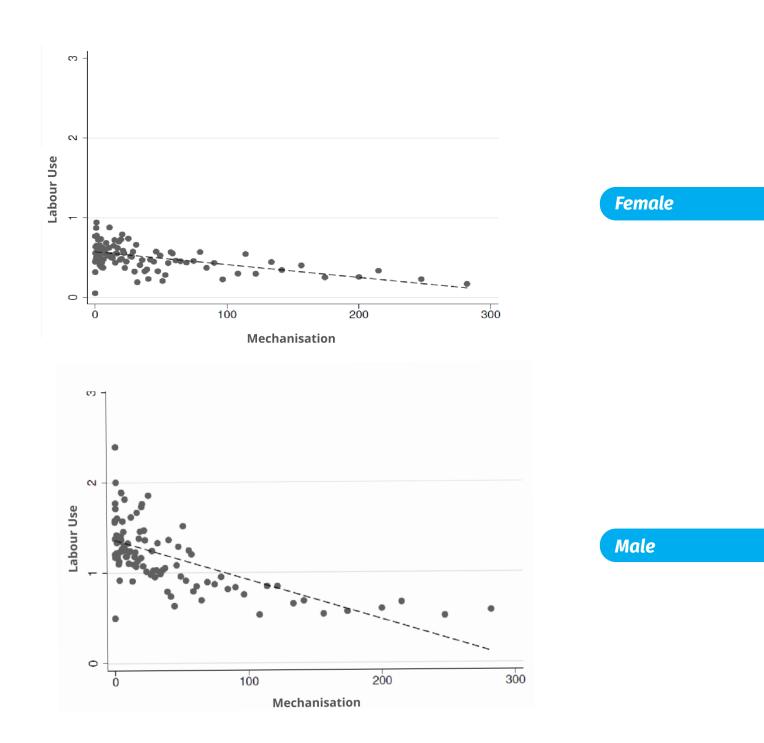

Women in Agriculture: Gendered impact of mechanisation on labour demand


Executive Summary

There has been an exponential increase in tractor adoption in India since the 1990s. This trend of mechanisation in agriculture has been accompanied with a reduction in farm employment in rural areas, particularly for women. When the production process is sequential and the division of labour across complementary tasks is gendered as is the case in agriculture—technological change can have a differential impact on women's and men's labour. This study shows that an increase of 1 percentage point in mechanisation of tilling operations decreases female labour use per hectare by 0.7 per cent. The decline is driven by a significant fall in labour required for weeding—a complementary, downstream operation that is generally undertaken by women—as a result of improved tilling quality. The observed 32 percentage point increase in mechanisation during 1999-2011 can account for 22 per cent of the total 30 per cent overall decline in women's rural employment in agriculture.

Introduction

Agricultural technology on Indian farms has undergone a rapid change, with increased machine usage over the last two decades. The adoption of machine tools, often powered by tractors, has been accompanied with a drop in farm employment in rural areas. During 1999-2011, the proportion of working-age adults employed in the rural farm sector fell by 11 percentage points (National Sample Survey [NSS], 1999 and 2011). Women have fared worse, with not only a decline in their farm-sector employment, but also a steady reduction in their overall labour force participation in rural India over the last three decades (Afridi et al. 2018)—from 49 per cent in 1999 to 41 per cent in 2011, and further to 28 per cent in 2017 (Periodic Labour Force Survey, 2017-2018). A large part of this decline has been due to a reduction in women's employment in agriculture, with no commensurate increase in their employment in other sectors in rural India. Around 39 per cent of working-age women were employed in rural farms in 1999 and this fell to per cent in 2011. However, their employment over this period in the construction sector increased 1 per cent to 5.4 per cent, in the services sector from 3 per cent to 3.5 per cent, while it remained stable at 4 per cent in manufacturing (NSS, 1999 and 2011).

Figure 1. Mechanisation and labour usage in agriculture

There is consensus in the literature that mechanisation in agriculture has often been labour-substituting rather than labour-complementing (Binswanger 1978; De Janvry et al. 1989). However, insights into whether mechanisation affects women's and men's labour differentially are largely missing. Technological change in general, and mechanisation in particular, in agriculture

is unlikely to affect female and male labour equally, since women and men are not only imperfect substitutes, but their degree of substitutability with machinery also differs (Boserup 1970; Laufer 1985) in agricultural production. For instance, male labour, relative to female labour, is more likely to be used in operating machines and also for the residual physically

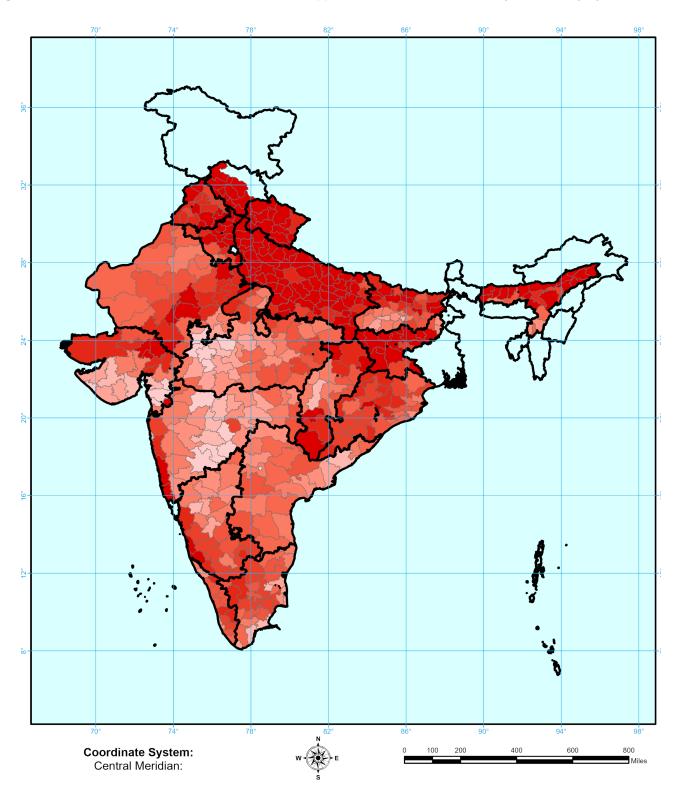
arduous tasks (Jacoby 1991; Skoufias 1993; Quisumbing 1996). When women perform tasks that require different skills from, and that are complementary to, the tasks typically performed by men, technological change can have disproportionate gender impacts. This study uses data on farm labour and input usage in India during 1999–2011 to analyse the effect of increase in farm machinery usage on women's and men's labour use in agriculture.

Brief Description of the Study

Agricultural mechanisation is defined as a process by which the source of power changes from simple hand tools and animal draught power to mechanical power. In order to assess the potential channels through which mechanisation can affect labour use in agriculture, it is important to understand the organisation of the production process, which consists of multiple operations that are performed sequentially (Skoufias 1993). These operations can be broadly classified into three stages: Stage 1 is land preparation through primary and secondary tilling: Stage 2 is sowing and intercultural operations like weeding; and Stage 3 is harvesting and threshing. Given this sequential nature of the production process, there exist complementarities across operations.

Three characteristics of the production process need to be highlighted, since these carry implications for gender differentiated impacts of mechanisation. First, the extent of physical strength vis-àvis precision or control required to perform an operation, primarily determines the degree of mechanisation of that operation in agricultural production (Norman et

al. 1988). The operation that is the most intensive in 'power' or physical strength is primary (or deep) tillage, followed by secondary (or shallow) tillage. Existing evidence thus indicates that Stage 1 operations are typically more likely (and the first) to be mechanised (Pingali 2007). Mechanisation in Stage 1 is often followed by an increased use of machinery in downstream tasks, particularly for Stage 3 harvesting operations. Since Stage 2 operations require less physical strength and more precision, they are usually less likely (or the last) to be mechanised. This pattern of adoption of mechanical technologies has been observed for both developing as well as developed countries (Binswanger 1986; Pingali and Hossain 1998). The second relevant feature is that the extent of machine uptake in tilling depends on the depth of required tillage. The tillage depth in turn is affected by loamy versus clayey content of soil in a region (Müller and Schindler 1999). Loamy soils are more amenable to deep tillage (Wildman 1981; Basant 1987), which requires at least 45 cm of soil to be turned over (Dunker et al. 1994). Increasing clay content in soil only allows for secondary tillage, which is less power or strength-intensive. Notably, the total power requirement depends on tillage depth and soil resistance, which are inversely related. Historically, and even in current times, men have always prepared land in both deep and shallow tilling areas (Giuliano 2017). But areas with more loamy soil content are more likely to use tilling/ ploughing implements due to greater tilling depth required (Carranza 2014). The loamy-clayey content of the soil could then also matter in the adoption of poweroperated machines, especially in tilling.


In general, adoption of machines can either displace or augment labour, depending on the operation for which they are used and their impact on agricultural productivity. This study specifically looks at mechanisation in Stage 1 of agricultural operations. In the tilling operation, the ploughing machines are driven either by a tractor or a power tiller. It is also likely that the usage of ploughing machines for secondary tilling operations is linked to adoption of ploughing machines in primary tilling operations, since the largest fixed cost of mechanisation involves tractor purchase. Increased uptake of machines in tilling can have direct and indirect effects on labour use. The direct effects can occur if labour use in tilling is substituted with the machine. The indirect effects can occur if improved tilling quality due to machine adoption lowers the demand for labour in downstream tasks like sowing, weeding and harvesting.

The third and final relevant characteristic is the gendered division of labour in agriculture-women and men perform different but complementary tasks. They are, hence, imperfect substitutes. Existing evidence shows that women's labour is less likely to be used in operations that require physical strength, for example, Stage 1 tilling operations, and more likely to be utilised in tasks that require precision, for example, Stage 2 weeding and sowing/ transplanting (and also in tea cultivation: Qian 2008; Mahajan and Ramaswami 2017). Indeed, operation-level data from NSS show that out of the total labour used in a given task, female labour constituted less than 10 per cent in Stage 1 tilling, but over

32 per cent in sowing and weeding over 1999-2011. These data suggest that men are significantly more likely to perform tilling operations in Indian agriculture, relative to other operations. The foregoing discussion highlights the potential impact of technology adoption on labour usage, not just in the specific operation that gets mechanised, but also in downstream operations due to the complementary nature of production. With greater adoption of power-operated implements in land tilling, a task that requires physical strength and therefore, more male vis-à-vis female labour, it is possible that demand for male labour falls. However, to the extent that men's labour is complementary to tillage machines—since they are more likely to operate these implements than women—any fall in men's labour usage may be mitigated.

On the other hand, if machines improve soil tillage in Stage 1, less weeding is required in Stage 2, which involves better precision and less physical strength—tasks in which women specialise. It is, therefore, imperative to analyse the impact of technological change on total labour usage as well as by operation. This study presents a simple theoretical model to analyse the potential effects of mechanisation on labour usage in agriculture. It uses exogenous variation in the difference between loamy and clayey soil shares in a district to first show that machine usage in tillage is significantly determined by the extent of soil loaminess (Bigot et al. 1987). It then utilises this predicted, exogenous variation in mechanisation to analyse its impact on women's and men's labour on the farm.

Figure 2. District-level variation in the difference between loamy and clayey soil shares

Source: Digitised by authors from National Bureau of Soil Survey (1995–1998) maps.

Notes: The districts are clubbed into deciles of differences in share of loamy and clayey soil. Darker shades of red denote higher share of loamy soil as compared to clayey soil. The soil maps for West Bengal, the North-Eastern states, and Jammu & Kashmir are unavailable. Some districts of Himachal Pradesh with many missing soil attributes have been dropped from the analysis.

Information over time (1999, 2007 and 2011) and from multiple sources on farm employment, agricultural inputs, climate and socio-economic characteristics at the district level in India is compiled to create a database with 1,083 district—year observations for the analysis.

Major Findings

- The effect of technological change in agricultural production in India is gendered: An increase of 1 percentage point in mechanisation decreases female labour usage per hectare by 0.7 per cent. Men's labour also falls by 0.1 per cent per hectare, but insignificantly. Thus, the observed 32 percentage point increase in mechanisation during 1999-2011 led to a 22 per cent reduction in women's labour in agriculture, other things being equal. This accounts for a major proportion of the 30 per cent decline in women's rural employment in agriculture in the country. The results are robust to a host of controls for agricultural, demographic and economic characteristics of a district, including pre-existing labour force participation of women, districtspecific trends in employment, and state-level secular trends.
- The observed decline in women's labour on farms is driven by a significant fall in labour used for weeding, a complementary operation that follows tilling of land in the agricultural production process. An increase of 1 unit in the intensity of tillage machinery leads to a reduction in women's labour use in weeding by 1 per cent.
- The effect of mechanisation on male labour in tilling is positive relative to

- weeding, suggesting that male labour is likely complementary to machines in Stage 1, while the direction of the impact of machinery on labour usage of women in Stage 1 tilling is negative.
- family Higher incomes due to mechanisation are not driving reduced usage of women's labour: The analysis by operation suggests that 'income effects', if any, are unlikely to explain the fact that the decline in women's labour is primarily in weeding. Hired labour is not substituting family labour of women, as would be expected when incomes increase. Besides, in line with the existing literature, the mostly insignificant research finds increases in yields and cropping weakening potential intensity. anv income effects due to mechanisation that could be driving the results.
- Reallocation of female labour across operations due to any improvements in crop productivity cannot explain decline in female labour usage in weeding: In principle, the total labour usage in agriculture may not fall as much if farmers are able to undertake multiple cropping due to increased timeliness of operations after machine uptake, or if crop productivity increases due to mechanisation. For instance, if crop productivity increases, labour could be reallocated towards harvesting in Stage 3 from Stages 1 and 2 without any change in overall labour usage. However, it is seen that increased machine uptake increased total male labour by 0.8 per cent, but total female labour fell by 2.8 per cent.
- Technological change can influence income inequality between women and

men: Farm daily wage rates increased for both women and men by around 0.6 per cent for a 1 percentage point increase in mechanisation. Thus, the adoption of machinery, reduced labour usage, but positively impacted the productivity of hired labour. The rise in wage rates led to a significant increase in male earnings by 3.6 per cent, but for women there was no significant change in wage earnings due to the decline in their labour usage or intensity of work. While the impact of earnings is only marginally significant, this provides suggestive evidence that the observed fall in labour usage of women may have exacerbated extant gender differences in wage earnings.

Policy Recommendations

- This study broadens our understanding of the potential reasons for the decline in women's workforce participation in India in recent years, a topic of fierce debate but limited consensus.
- The Sub-Mission on Agricultural Mechanisation, under the National Mission on Agricultural Extension and Technology, was launched in 2014–2015 to promote inclusive growth of farm mechanisation. The budget allocation for the year 2020–2021 is Rs. 1,033 crore, of which Rs. 553 crore has been released

to state governments as of August 2020. The findings of the study point towards the need to strengthen the provisions for womenfarmers under the Mission, in terms of training in the use of farm machinery.

- There is an increasing trend of female farm managers in Indian agriculture, and farms managed by women are seen to have lower production and profits, on average, as compared with farms managed by men. Support should be provided to female farm managers in the form of finance, information and logistics—in the adoption of the latest technologies in farming.
- Given the nature of the ongoing Covid-19 pandemic, there is a broad shift towards automation and use of technology in various sectors of the economy. Accordingly, there may be a push towards greater mechanisation in agriculture. This may particularly be the case in relatively well-off states such as Punjab and Haryana, which are also facing an overall reduction in labour supply due to the return of migrant workers to their home states. Policy stakeholders ought to be cognisant of the potential gendered impacts that such technological change might have on labour usage in agriculture, as well as the wage earnings of women vis-à-vis men.

IWWAGE is an initiative of LEAD, an action-oriented research centre of IFMR Society (a not-for-profit society registered under the Societies Act). LEAD has strategic oversight and brand support from Krea University (sponsored by IFMR Society) to enable synergies between academia and the research centre. IWWAGE is supported by the Bill & Melinda Gates Foundation. The findings and conclusions in this brief are those of the authors and do not necessarily represent the views of the Bill & Melinda Gates Foundation.

Indian Statistical Institute is an institution of National importance devoted to the research, teaching, and applicartion of statistics, mathematics and economics.

IWWAGE - An Initiative of LEAD at Krea University

Block M 6, Second Floor, Kharera, Hauz Khas New Delhi, Delhi—110016 +91 11 4909 6529 | www.iwwage.org

